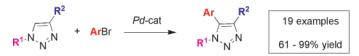
2007 Vol. 9, No. 12 2333-2336

Direct Pd-Catalyzed Arylation of 1,2,3-Triazoles[†]

Stepan Chuprakov, Natalia Chernyak, Alexander S. Dudnik, and Vladimir Gevorgyan*


Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061

vlad@uic.edu

37, 4185.

Received March 21, 2007

ABSTRACT

A highly efficient method for the synthesis of multisubstituted 1,2,3-triazoles via a direct Pd-catalyzed C-5 arylation has been developed.

1,2,3-Triazoles, due to their unique chemical and structural properties, have received much attention over the past decades and found wide application in medicinal chemistry and material science. The importance of 1,2,3-triazoles has resulted in the development of several synthetic methods for their construction.² One of the most important and useful approaches to the synthesis of 1,2,3-triazoles utilizes Huisgen's 1,3-dipolar [3+2]-cycloaddition of azides and alkynes.³ However, this methodology, in most cases, leads to the formation of a mixture of regioisomeric products and requires the presence of a strong electron-withdrawing substitutent at the alkyne. 1a,4 Recently, Fokin and Sharpless reported Cu(I)-catalyzed regioselective synthesis of 1,4-disubstituted

1,2,3-triazoles,⁵ and later, in collaboration with Jia, the Ru(II)-catalyzed approach toward complimentary regioisomers, the 1,5-disubstituted 1,2,3-triazoles.⁶

Known methods for the regioselective synthesis of fully substituted 1,2,3-triazoles include reactions of azides with active methylene compounds⁷ or bromo-magnesium acetylides, with subsequent addition of electrophile;8 metalation of the existing triazole ring followed by reaction with electrophile;9 and cross-coupling reactions of 5-halo-1,2,3triazoles. 10 However, these methods have certain limitations, as they require employment of organometallic reagents or halotriazoles. An alternative approach may involve direct transition metal-catalyzed arylation and heteroarylation, which has been recently shown to be a powerful synthetic tool for functionalization of aromatic heterocycles. 11 Recently, Daugulis demonstrated an efficient Pd-catalyzed

[†] Dedicated to Prof. Ivars Kalvins on occasion of his 60th birthday. (1) (a) Fan, W.-Q.; Katritzky, A. R. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier: Oxford, UK, 1996; Vol. 4, pp 1-126. (b) Whiting, M.; Muldoon, J.; Lin, Y.-C.; Silverman, S. M.; Lindstrom, W.; Olson, A. J.; Kolb, H. C.; Finn, M. G.; Sharpless, K. B.; Elder, J. H.; Fokin, V. V. Angew. Chem., Int. Ed. 2006, 45, 1435. (c) Bourne, Y.; Kolb, H. C.; Radić, Z.; Sharpless, K. B.; Taylor, P.; Marchot, P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1449. (d) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radić, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 1053. (e) Alvarez, R.; Velazques, S.; San, F.; Aquaro, S.; De, C.; Perno, C. F.; Karlesson, A.; Balzarini, J.; Camarasa, M. J. *J. Med. Chem.* **1994**,

⁽²⁾ For recent reviews, see: (a) Krivopalov, V. P.; Shkurko, O. P. Russ. Chem. Rev. 2005, 74, 339. (b) Tome, A. C. Product class 13: 1,2,3-triazoles. In Science of Synthesis; Stor, R., Gilchrist, T., Eds.; Thieme: New York, 2004; Vol. 13, pp 415–601.
(3) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.;

Wiley: New York, 1984; pp 1-176.

^{(4) (}a) Padwa, A. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, UK, 1991; Vol. 4, pp 1069-1109.

^{(5) (}a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. (b) See also: Tornøe, C. W.; Christensen, C.; Meldal, M. *J. Org. Chem.* **2002**, *67*, 3057. (6) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.;

Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.

⁽⁷⁾ L'Abbè, G. Ind. Chim. Belge 1969, 34, 519 and references therein. (8) Krasinski, A.; Fokin, V. V.; Sharpless, K. B. *Org. Lett.* **2004**, *6*, 1237.

^{(9) (}a) Holzer, W.; Ruso, K. J. Heterocycl. Chem. 1992, 29, 1203. (b) Ohta, S.; Kawasaki, I.; Uemura, T.; Yamashita, M.; Yoshioka, T.; Yamaguchi, S. Chem. Pharm. Bull. 1997, 45, 1140. (c) Uhlmann, P.; Felding, J.; Vedsø, P.; Begtrup, M. J. Org. Chem. 1997, 62, 1917. (d) Felding, J.; Uhlmann, P.; Kristensen, J.; Vedsø, P.; Begtrup, M. Synthesis **1998**, 1181.

⁽¹⁰⁾ Deng, J.; Wu, Y.-M.; Chen, Q.-Y. Synthesis 2005, 2730.

⁽¹¹⁾ For recent reviews, see: (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, DOI: 10.1039/b606984n. (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.

Table 1. C-5 Arylation of 1,4-Disubstituted 1,2,3-Triazoles

#	Triazole	Т	ime,	Product	Yield,	#	Triazole	_	Time,	Product	Yield,
1	Ph /	1a	2	Ph Ph	2a 96 ^b	8	n-C ₇ H ₁₅ -N _N ,N	1c	10	CO ₂ Et	2h 78 ^d
2	"	"	2	Ph	2b 97 ^b	9	N. N. N	1d	6	CO ₂ Et	2i 84°
3	"	"	18	O ₂ N Ph	2c 74 ^b	10	Ph-N,N'N	1e	18	MeO Ph-N N N	2j 90 ^b
4	"	"	3	Ph n-C ₇ H ₁₅ -N _N ,N	2d >99°	11	Ph N N N	1f	24	Ph_N,N	2k 61°
5	Ph N N N	1b	3	Ph N'N'N	2e 66°	12	CO ₂ E	it 1g	24	Ph CO ₂ E	
6	"	"	10	Me ₂ N Ph	2f 90°	13	0Me		24	Ph OMe	
7	"	n	10	Ph Ph	2g 77 ^d		·· ··			.	

^a Isolated yield; 0.5 mmol scale. ^b Pd(PPh₃)₂Cl₂ was used as the catalyst. ^c Pd(OAc)₂ was used as the catalyst. ^d Pd₂(dba)₃•CHCl₃ was used as the catalyst.

arylation of 1,2,4-triazole.¹² However, to the best of our knowledge, arylation of 1,2,3-triazoles has not been reported to date.¹³

Motivated by the importance of developing new general methods toward multisubstituted 1,2,3-triazoles, we examined the feasibility of a direct Pd-catalyzed arylation reaction with aryl bromides: a method proved efficient in the highly regioselective C-3 arylation of indolizines. ¹⁴ It was found that C-5 arylation of 1,4-disubstituted 1,2,3-triazoles **1a**–**h** in the presence of Pd catalyst and tetrabutylammonium acetate in NMP proceeded smoothly to provide C-5 arylated triazoles **2a**–**m** in good to excellent yields (Table 1). ¹⁵ It was found that this methodology allows for efficient introduction of both electron-deficient and electron-rich aryl

of 1,4-disubstituted 1,2,3-triazoles, containing electron-withdrawing aryl- (entry 12) or carbethoxy groups (entries 8 and 9), electron-donating aryl groups (entries 10 and 13), as well as secondary aliphatic alcohol (entry 11), at the C-4 position and alkyl, aryl, and benzyl groups at nitrogen, were shown to undergo C-5 arylation successfully. It was also demonstrated that a variety of functional groups such as methoxy (entries 2, 10, and 13), carbethoxy (entries 8, 9, and 12), nitro (entry 3), hydroxy (entry 11), *N*,*N*-dialkylamino (entry 6), and trifluoromethyl (entry 8) were perfectly tolerated under these reaction conditions. Notably, aryl bromides bearing 2-naphthyl (entry 4), bulky 1-naphthyl

groups at the C-5 position of a triazole ring. Thus, a variety

2334 Org. Lett., Vol. 9, No. 12, 2007

⁽¹²⁾ Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449.

⁽¹³⁾ For intramolecular Heck-type vinylation of 1,2,3-triazole, see: Chen, W.-L.; Su, C.-L.; Huang, X. Synlett 2006, 1446.

⁽¹⁴⁾ Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. **2004**, *6*, 1159.

⁽¹⁵⁾ Notably, we did not observe triazole-directed arylation of *N*-aryl or *N*-benzyl substitutents under these reaction conditions. For amide- and heterocycle-directed arylation of arenes via C-H activation, see, for example: (a) Shabashov, D.; Daugulis, O. *Org. Lett.* **2005**, *7*, 3657. (b) Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. *Tetrahedron Lett.* **2000**, *41*, 2655. (c) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. *J. Am. Chem. Soc.* **2005**, *127*, 7330.

(entry 5), and *m*-tolyl (entry 11) groups and an electron-deficient heteroaromatic 3-pyridyl moiety (entry 7) can also be employed in this reaction.

Encouraged by these results, we next examined the arylation of the 4,5-unsubstituted 1,2,3-triazole core. To our delight, a direct Pd-catalyzed arylation of *N*-monosubstituted triazole **1i** with phenyl bromide proceeded highly regioselectively producing C-5 arylated triazole **3a** as a single regioisomer¹⁶ (entry 1, Table 2). Although 1,5-disubstituted

Table 2. Regioselective C-5 Arylation of 1-Benzyl-1,2,3-triazole

Pł	H H ArBr	5mol% Pd(OAc) ₂ 2eq Bu ₄ NOAc 0.5M NMP, 100°C	Ph	Ar H
#	Ar Br	Product		Yield, %
1	Ph	Ph N N	3a	80 _P
2	MeO-\begin{align*}Br	MeO H	3b	71 ⁶
3	Me₂N——Br	Me ₂ N H	3e	83
4	Br	Ph_N,N	3d	77 ⁶
5	EtO ₂ C—————Br	Ph_N,N	3e	64
6	F ₃ C——Br	F ₃ C H	3f	67

 a Isolated yield; 0.5 mmol scale. b A trace amount of bisarylated product was detected by GC/MS analysis of the crude reaction mixture.

1,2,3-triazoles can be accessed regioselectively from organic azides and terminal acetylenes⁶ or bromomagnesium acetylides,⁸ only syntheses of 1,2,3-triazoles employing an electron-withdrawing or a simple phenyl group at alkyne were demonstrated by these methods. Thus, we were interested in the development of an alternative regioselective approach toward 1,5-disubstituted 1,2,3-triazoles with an orthogonal substitution pattern at C-5. Gratifyingly, we have found that C-5 arylation of *N*-monosubstituted 1,2,3-triazoles with aryl

bromides bearing electron-donating functional groups such as methoxy (entry 2) and *N*,*N*-dialkylamino (entry 3) afforded triazoles **3b** and **3c** regioselectively in good yields. Moreover, this direct arylation approach allows for efficient and regioselective introduction of electron-withdrawing aryl substitutents at C-5 (entries 5–7), thus revealing good generality of this methodology and extending the scope of the existing methods toward 1,5-disubstituted 1,2,3-triazoles.

As shown above, only trace amounts, if any, of bisarylated products were detected in the arylation of 1-monosubstituted triazole **1i** (entries 1, 2, and 4, Table 2). To verify whether efficient C-4 arylation of 1,5-disubstituted 1,2,3-triazoles is possible, we examined arylation of triazoles **4a** and **4b** under standard conditions. It was found that arylation at C-4 is extremely sluggish compared to that for C-5, providing only moderate yields of products **2m** and **2n** even upon prolonged heating with 10 mol % of Pd catalyst and 3 equiv of aryl bromide (Scheme 1).

Scheme 1. C-4 Arylation of 1,5-Disubstituted 1,2,3-Triazoles

Naturally, we were interested in elucidating the mechanism for this Pd-catalyzed arylation reaction. Thus, our kinetic isotope effect studies (Scheme 2) revealed no isotope effect

Scheme 2. Kinetic Isotope Effect Studies

1.5eq p-MeO-C₆H₄Br
5mol% Pd(PPh₃)₂Cl₂
2eq Bu₄NOAc

0.5M NMP, 100°C

Ph⁻N, N

1e / 1e-d

k_{H/D} = 1.0

2j

 $(k_{\rm H/D}=1.0)$. Additionally, no deuterium scrambling for **1e**-d was observed under these reaction conditions. These data, in combination with the lack of an observed change in reaction rates in the presence of Cu-salts¹⁷ and failure when performing reactions in the presence of hydride sources,¹⁷ are not supportive for the possible involvement of C-H activation,¹⁸ cross-coupling,¹⁹ and Heck-type²⁰ mechanisms

Org. Lett., Vol. 9, No. 12, 2007

⁽¹⁶⁾ Fundamental differences in C-5 and C-4 reactivity of 1,2,3-triazoles are also observed during lithiation reactions. See, for example: (a) Grimmett, M. R.; Iddon, B. *Heterocycles* **1995**, *41*, 1525. (b) Raap, R. *Can. J. Chem.* **1971**, *49*, 1792. (c) Ghose, S.; Gilchrist, T. L. *J. Chem. Soc.*, *Perkin Trans. I* **1991**, 775.

⁽¹⁷⁾ See the Supporting Information for details.

⁽¹⁸⁾ Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. **2002**, 124, 5286.

⁽¹⁹⁾ Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467.

earlier proposed for arylation of certain heterocycles.²¹ The observed higher reactivity in arylation of electron-rich triazole **1h** during competitive kinetic studies provided certain support for an electrophilic mechanism for this reaction (Table 3).^{22,23}

Table 3. Kinetic Studies

	R	$k_{ m R}\!/k_{ m H}$
h	MeO	1.3
a	H	1.0
g	$\mathrm{CO}_2\mathrm{Et}$	1.0

Finally, we performed DFT calculations (B3LYP/6-311+G**) of electrostatic potential charges at C-4 and C-5 positions of model triazole **5** (Figure 1). Development of substantial negative charge at C-5 and positive charge at C-4 in **5** provided additional support for an electrophilic mechanism and explained the origins of the observed high regioselectivity in the C-5 arylation of *N*-monosubstituted 1,2,3-triazoles as well as deminished reactivity in C-4 arylation (Scheme 1). It is believed that the combination of

Figure 1. Electrostatic potential charges at C-4 and C-5.

experimental and computational data presented above strongly supports involvement of an electrophilic mechanism²² as the most probable pathway for the Pd-catalyzed C-5 arylation of 1,2,3-triazoles (Scheme 3).

Scheme 3. Proposed Mechanism for Arylation of 1,2,3-Triazoles

In summary, we have shown that a variety of unsymmetrically substituted 1,2,3-triazoles can be easily synthesized via a direct Pd-catalyzed arylation of 1,4-disubstituted triazoles, compounds readily accessible via "click" chemistry. We have also found that 1,5-disubstituted 1,2,3-triazoles can be efficiently synthesized via a highly regioselective C-5 arylation of *N*-monosubstituted triazoles. Experimental and computational studies strongly support the electrophilic nature for this transformation.

Acknowledgment. The support of the National Institutes of Health (Grant GM-64444) is gratefully acknowledged.

Supporting Information Available: Preparative procedures and analytical and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org. OL070697U

2336 Org. Lett., Vol. 9, No. 12, 2007

⁽²⁰⁾ Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. Org. Lett. 2003, 5, 301.

⁽²¹⁾ For a detailed discussion of these mechanisms, see refs 11a and 14. See also: Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. **2005**, 127, 8050.

⁽²²⁾ For a discussion on the electrophilic mechanism in the arylation of heterocycles, see refs 19, 21, and 12.

⁽²³⁾ Although nearly equal reactivity of 1a vs 1g is not clearly understood, a similar trend was observed in cationic Heck reactions in the styrene series ($k_{\rm rel}$ p-OMe:H:p-CO₂Me = 1.21:1.00:0.96), see: Fristrup, P.; Le Quement, S.; Tanner, D.; Norrby, P.-O. *Organometallics* **2004**, *23*, 6160.